Download Free Textbook Of Drug Design And Discovery Fifth Edition Book in PDF and EPUB Free Download. You can read online Textbook Of Drug Design And Discovery Fifth Edition and write the review.

Building on the success of the previous editions, the Textbook of Drug Design and Discovery, Fifth Edition, has been thoroughly revised and updated to provide a complete source of information on all facets of drug design and discovery for students of chemistry, pharmacy, pharmacology, biochemistry, and medicine. The information is presented in an up-to-date review form with an underlying and fundamental focus on the educational aspects. Beginning with an introduction to drug design and discovery, the first eight chapters cover molecular recognition, ligand-based drug design, and biostructure-based drug design. The authors also discuss drug-like properties and decision making in medicinal chemistry, chemical biology, natural products in drug discovery, and in vivo imaging in drug discovery. The middle six chapters provide an overview of peptide and protein drug design, prodrugs in drug design and development, and enzyme inhibitors. The authors also go through receptors (structure, function, and pharmacology), ion channels (structure and function), and neurotransmitter transporters (structure, function, and drug binding). The following chapters address important neurotransmitter systems, GABA and glutamic acid receptors and transporter ligands, acetylcholine, histamine, dopamine and serotonin, and opioid and cannabinoid receptors. The book concludes with an examination of neglected diseases, anticancer agents, tyrosine kinase receptors, and antibiotics.
Building on the success of the previous editions, the Textbook of Drug Design and Discovery, Fifth Edition, has been thoroughly revised and updated to provide a complete source of information on all facets of drug design and discovery for students of chemistry, pharmacy, pharmacology, biochemistry, and medicine. The information is presented in an up-to-date review form with an underlying and fundamental focus on the educational aspects. Beginning with an introduction to drug design and discovery, the first eight chapters cover molecular recognition, ligand-based drug design, and biostructure-based drug design. The authors also discuss drug-like properties and decision making in medicinal chemistry, chemical biology, natural products in drug discovery, and in vivo imaging in drug discovery. The middle six chapters provide an overview of peptide and protein drug design, prodrugs in drug design and development, and enzyme inhibitors. The authors also go through receptors (structure, function, and pharmacology), ion channels (structure and function), and neurotransmitter transporters (structure, function, and drug binding). The following chapters address important neurotransmitter systems, GABA and glutamic acid receptors and transporter ligands, acetylcholine, histamine, dopamine and serotonin, and opioid and cannabinoid receptors. The book concludes with an examination of neglected diseases, anticancer agents, tyrosine kinase receptors, and antibiotics.
This volume provides an introduction to medicinal chemistry. It covers basic principles and background, and describes the general tactics and strategies involved in developing an effective drug.
Practical Bioinformatics is specifically designed for biology majors, with a heavy emphasis on the steps required to perform bioinformatics analysis to answer biological questions. It is written for courses that have a practical, hands-on element and contains many exercises (for example, database searches, protein analysis, data interpretation) to complement the straightforward and practical topics. The chapters are focused on DNA, RNA, and protein sequence analysis‹frequently performed subsets of the field of bioinformatics‹taking the reader through the commonly asked question Ðwhat can I learn about this sequence?Ó A special note to established scientists: new genomic sequences are being published at an accelerating pace. Although new technology has led to unprecedented accuracy of the sequence, incomplete and challenging assemblies along with imperfect predictive methods are still generating gene models that require verification. With the sequence analysis skills learned from this book, features such as missing exons and incorrect termini can be easily recognized and more accurate gene models can be constructed.
The Organic Chemistry of Drug Design and Drug Action, Third Edition, represents a unique approach to medicinal chemistry based on physical organic chemical principles and reaction mechanisms that rationalize drug action, which allows reader to extrapolate those core principles and mechanisms to many related classes of drug molecules. This new edition includes updates to all chapters, including new examples and references. It reflects significant changes in the process of drug design over the last decade and preserves the successful approach of the previous editions while including significant changes in format and coverage. This text is designed for undergraduate and graduate students in chemistry studying medicinal chemistry or pharmaceutical chemistry; research chemists and biochemists working in pharmaceutical and biotechnology industries. Updates to all chapters, including new examples and references Chapter 1 (Introduction): Completely rewritten and expanded as an overview of topics discussed in detail throughout the book Chapter 2 (Lead Discovery and Lead Modification): Sections on sources of compounds for screening including library collections, virtual screening, and computational methods, as well as hit-to-lead and scaffold hopping; expanded sections on sources of lead compounds, fragment-based lead discovery, and molecular graphics; and deemphasized solid-phase synthesis and combinatorial chemistry Chapter 3 (Receptors): Drug-receptor interactions, cation-π and halogen bonding; atropisomers; case history of the insomnia drug suvorexant Chapter 4 (Enzymes): Expanded sections on enzyme catalysis in drug discovery and enzyme synthesis Chapter 5 (Enzyme Inhibition and Inactivation): New case histories: for competitive inhibition, the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib and Abelson kinase inhibitor, imatinib for transition state analogue inhibition, the purine nucleoside phosphorylase inhibitors, forodesine and DADMe-ImmH, as well as the mechanism of the multisubstrate analog inhibitor isoniazid for slow, tight-binding inhibition, the dipeptidyl peptidase-4 inhibitor, saxagliptin Chapter 7 (Drug Resistance and Drug Synergism): This new chapter includes topics taken from two chapters in the previous edition, with many new examples Chapter 8 (Drug Metabolism): Discussions of toxicophores and reactive metabolites Chapter 9 (Prodrugs and Drug Delivery Systems): Discussion of antibody–drug conjugates
The Practice of Medicinal Chemistry, Fourth Edition provides a practical and comprehensive overview of the daily issues facing pharmaceutical researchers and chemists. In addition to its thorough treatment of basic medicinal chemistry principles, this updated edition has been revised to provide new and expanded coverage of the latest technologies and approaches in drug discovery. With topics like high content screening, scoring, docking, binding free energy calculations, polypharmacology, QSAR, chemical collections and databases, and much more, this book is the go-to reference for all academic and pharmaceutical researchers who need a complete understanding of medicinal chemistry and its application to drug discovery and development. Includes updated and expanded material on systems biology, chemogenomics, computer-aided drug design, and other important recent advances in the field Incorporates extensive color figures, case studies, and practical examples to help users gain a further understanding of key concepts Provides high-quality content in a comprehensive manner, including contributions from international chapter authors to illustrate the global nature of medicinal chemistry and drug development research An image bank is available for instructors at www.textbooks.elsevier.com
Natural materials of plant, microbial or animal origin are an important source of modern drugs. This book deals with such materials with a focus on the pure, pharmacologically active compounds which can be isolated from them. The occurrence, biosynthesis, isolation, chemistry and medical use of the compounds are described, as well as semisynthetic derivatives and the use of naturally occurring substances as templates for synthetic drugs. Thoroughly revised since the 3rd edition many chapters have been extended to reflect the increase in knowledge and information now available. This book should be of interest to undergraduate and graduate students of pharmacognosy, pharmacy, medicinal chemistry, phytochemistry, biochemistry and to all those who are interested in natural products.

Best Books