Download Free Synchronous Generators The Electric Generators Handbook Book in PDF and EPUB Free Download. You can read online Synchronous Generators The Electric Generators Handbook and write the review.

Surveying the technologies used to satisfy the world's demand for open, efficient, and clean electricity, Synchronous Generators provides an in-depth examination of synchronous generators for both stand-alone and grid-connected applications. Part of The Electric Generators Handbook, Two-Volume Set, this book offers authoritative, tightly focused treatment of the topologies, steady state and transients modeling, performance, control, design, and testing of stand-alone and grid-connected generators in synchronous operation. Synchronous Generators offers a thorough introduction to electrical energy and electricity generation, including the basic principles of electric generators. The book devotes a chapter to the most representative prime mover models for transients used in active control of various generators. Then, individual chapters explore the topologies and steady state of large and medium-power synchronous generators; modeling and transients; control in power systems; design, including simple cases; and testing. Numerous examples, sample results, and illustrations highlight the concepts. The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Synchronous Generators supplies the tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.
Synchronous Generators, the first of two volumes in the Electric Generators Handbook, offers a thorough introduction to electrical energy and electricity generation, including the basic principles of electric generators. The book devotes a chapter to the most representative prime mover models for transients used in active control of various generators. Then, individual chapters explore large- and medium-power synchronous generator topologies, steady state, modeling, transients, control, design, and testing. Numerous case studies, worked-out examples, sample results, and illustrations highlight the concepts. Fully revised and updated to reflect the last decade’s worth of progress in the field, this Second Edition adds new sections that: Discuss high-power wind generators with fewer or no permanent magnets (PMs) Cover PM-assisted DC-excited salient pole synchronous generators Present multiphase synchronous machine inductances via the winding function method Consider the control of autonomous synchronous generators Examine additional optimization design issues Illustrate the optimal design of a large wind generator by the Hooke–Jeeves method Detail the magnetic equivalent circuit population-based optimal design of synchronous generators Address online identification of synchronous generator parameters Explain the small-signal injection online technique Explore line switching (on or off) parameter identification for isolated grids Describe synthetic back-to-back load testing with inverter supply The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Synchronous Generators, Second Edition supplies state-of-the-art tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.
The modern world hungers for electricity. Traditionally, this hunger was sated with predominantly constant-speed-regulated, synchronous generators. However, new demands require the stable, quick, and efficient delivery and control offered by variable-speed generators. Surveying all of the technologies used to satisfy the world's demand for open, efficient, and clean electricity, The Electric Generators Handbook, Two-Volume Set provides the first unified, in-depth examination of both synchronous and variable-speed generators for stand-alone and grid-connected applications. Individually, each book offers authoritative, tightly focused treatment that is ideal for specialists. Together, they offer the most complete reference available on the topologies, steady state and transients modeling, performance, control, design, and testing of stand-alone and grid-connected generators. The two-volume design of this handbook combines unmatched comprehensiveness with the finely tuned attention and convenient size of a specialized monograph. This combination offers maximum ease of use and versatility, allowing you to choose the coverage best suited to your individual needs. The set comes packaged in a protective slipcase, or each volume may be purchased individually. Together or separately, you are sure to find the information you need in... Synchronous Generators The first of two volumes, Synchronous Generators offers a thorough introduction to electrical energy and electricity generation, including the basic principles of electric generators. The book devotes a chapter to the most representative prime mover models for transients used in active control of various generators. Then, individual chapters explore the topologies and steady state of large and medium-power synchronous generators; modeling and transients; control in power systems; design, including simple cases; and testing. Numerous examples, sample results, and illustrations highlight the concepts. Variable Speed Generators The second of two volumes, Variable Speed Generators thoroughly covers all types of variable-speed generators currently in progress in distributed generation and renewable energy applications around the world. It delves into the steady state, transients, control, and design of claw-pole rotor synchronous, induction, permanent magnet-assisted synchronous, and switched reluctance starter alternators for hybrid-electric vehicles. It also discusses PM synchronous, transverse-flux PM, and flux-reversal PM generators for low-speed wind and hydro energy conversion as well as linear motion alternators for residential and spacecraft applications. Numerous design and control examples illustrate the discussion. The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Reflecting the latest technologies and deployments from around the world, The Electric Generators Handbook, Two-Volume Set supplies the tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.
Surveying the technologies used to satisfy the world's demand for open, efficient, and clean electricity, Variable Speed Generators provides an in-depth examination of variable-speed generators for both stand-alone and grid-connected applications. Part of The Electric Generators Handbook, Two-Volume Set, this work offers authoritative, tightly focused treatment of the topologies, steady state and transients modeling, performance, control, design, and testing of stand-alone and grid-connected generators operating at variable speeds. Variable Speed Generators thoroughly covers all types of variable-speed generators currently in progress in distributed generation and renewable energy applications around the world. It delves into the steady state, transients, control, and design of claw-pole rotor synchronous, induction, permanent magnet-assisted synchronous, and switched reluctance starter alternators for hybrid-electric vehicles. It also discusses PM synchronous, transverse-flux PM, and flux-reversal PM generators for low-speed wind and hydro energy conversion as well as linear-motion alternators for residential and spacecraft applications. Numerous design and control examples illustrate the discussion. The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Variable Speed Generators supplies the tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.
The Electrical Engineer's Handbook is an invaluable reference source for all practicing electrical engineers and students. Encompassing 79 chapters, this book is intended to enlighten and refresh knowledge of the practicing engineer or to help educate engineering students. This text will most likely be the engineer’s first choice in looking for a solution; extensive, complete references to other sources are provided throughout. No other book has the breadth and depth of coverage available here. This is a must-have for all practitioners and students! The Electrical Engineer's Handbook provides the most up-to-date information in: Circuits and Networks, Electric Power Systems, Electronics, Computer-Aided Design and Optimization, VLSI Systems, Signal Processing, Digital Systems and Computer Engineering, Digital Communication and Communication Networks, Electromagnetics and Control and Systems. About the Editor-in-Chief... Wai-Kai Chen is Professor and Head Emeritus of the Department of Electrical Engineering and Computer Science at the University of Illinois at Chicago. He has extensive experience in education and industry and is very active professionally in the fields of circuits and systems. He was Editor-in-Chief of the IEEE Transactions on Circuits and Systems, Series I and II, President of the IEEE Circuits and Systems Society and is the Founding Editor and Editor-in-Chief of the Journal of Circuits, Systems and Computers. He is the recipient of the Golden Jubilee Medal, the Education Award, and the Meritorious Service Award from the IEEE Circuits and Systems Society, and the Third Millennium Medal from the IEEE. Professor Chen is a fellow of the IEEE and the American Association for the Advancement of Science. * 77 chapters encompass the entire field of electrical engineering. * THOUSANDS of valuable figures, tables, formulas, and definitions. * Extensive bibliographic references.
In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.
Variable Speed Generators, the second of two volumes in the Electric Generators Handbook, provides extensive coverage of variable speed generators in distributed generation and renewable energy applications around the world. The book delves into the steady state, transients, control, and design of claw-pole-rotor synchronous, induction, permanent-magnet-(PM)-assisted synchronous, and switched reluctance starter alternators for electric hybrid vehicles. It discusses PM synchronous, transverse flux PM, and flux reversal PM generators for low-speed wind and hydro energy conversion. It also explores linear motion alternators for residential and spacecraft applications. Numerous design and control examples illustrate the exposition. Fully revised and updated to reflect the last decade’s worth of progress in the field, this Second Edition adds new sections that: Address the ride-through control of doubly fed induction generators under unbalanced voltage sags Consider the control of stand-alone doubly fed induction generators under unbalanced nonlinear loads Detail a stand-alone squirrel cage induction generator (SCIG) with AC output and a low-rating pulse-width modulated (PWM) converter Present a twin stator winding SCIG with 50 percent rating inverter and diode rectifier, and a dual stator winding induction generator with nested cage rotor Examine interior permanent magnet claw-pole-alternator systems for more vehicle braking energy recuperation, and high power factor Vernier PM generators Depict a PM-assisted reluctance synchronous motor/generator for an electric hybrid vehicle, and a double stator switched reluctance generator with segmented rotor Describe the grid to stand-alone transition motion-sensorless dual-inverter control of permanent magnet synchronous generators with asymmetrical grid voltage sags and harmonics filtering The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Variable Speed Generators, Second Edition supplies state-of-the-art tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.

Best Books