Download Free Support Of Underground Excavations In Hard Rock Book in PDF and EPUB Free Download. You can read online Support Of Underground Excavations In Hard Rock and write the review.

The safe and economical construction of tunnels, mines, and other subterranean works depends on the correct choice of support systems to ensure that the excavations are stable. These support systems should be matched to the characterstics of the rock mass and the excavation techniques adopted. Establishing the support requirements, designing support systems and installing these correctly are essential elements in safe underground construction. This is a comprehensive and practical work which also gives access to user-friendly computer programmes which enable the investigation and design of support techniques. Details on how to obtain this software are also included in the book.
Underground Excavations in Rock deals with the geotechnical aspects of the design of underground openings for mining and civil engineering processes.
This classic handbook deals with the geotechnical problems of rock slope design. It has been written for the non-specialist mining or civil engineer, with worked examples, design charts, coverage of more detailed analytical methods, and of the collection and interpretation of geological and groundwater information and tests for the mechanical properties of rock.
This practical guide describes the stage-by-stage development of a method for predicting the penetration rate (PR) and the advance rate (AR) for tunnel boring machines based on an expanded version of the Q-value, QTBM. The author analyzes 145 TBM tunnels that total 1,000km in length. He then develops simple formulae to estimate PR and AR from the QTBM value and to back-calculate QTBM from performance data. The book quantitatively explains actual advance rates as high as five m/hr for one day or as low as 0.005 m/hr for several months. It also covers logging methods, empirical TBM tunnel support design, and numerical verification of support.
Vast knowledge has been developed in the area of tunnelling in weak rocks over the years, and this book bridges an important gap by bringing all the information together for the benefit of the tunnelling Industry. In particular, tunnelling in poor conditions is a huge challenge for engineers and designers, and this book tackles all typical problems headon. Topics covered include classification approach, design approaches for site-specific grounds, a new invention on shielded tunnel boring machine, case histories, tunnel mechanics, risk engineering and management culture. • Based on extensive field research experiences in Himalayan region and Alps • Exclusive chapters on tunnelling hazards, squeezing ground conditions (a full detailed case study), swelling ground conditions, critical state rock mechanics, etc. • Supported by over 180 figures and 90 tables of data, and test examples (with solutions)
Rock mass classification methods are commonly used at the preliminary design stages of a construction project when there is very little information. It forms the bases for design and estimation of the required amount and type of rock support and groundwater control measures. Encompassing nearly all aspects of rock mass classifications in detail, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers and managers with extensive practical knowledge which is time-tested in the projects in Himalaya and other parts of the world in complex geological conditions. Rock mass classification is an essential element of feasibility studies for any near surface construction project prior to any excavation or disturbances made to earth. Written by an author team with over 50 years of experience in some of the most difficult mining regions of the world, Civil Engineering Rock Mass Classification: Tunnelling, Foundations and Landsides provides construction engineers, construction managers and mining engineers with the tools and methods to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. The goal is to use effective mapping techniques to obtain data can be used as input for any of the established rock classification systems. The book covers all of the commonly used classification methods including: Barton’s Q and Q’ systems, Bieniawski’s RMR, Laubscher’s MRMR and Hoek’s and GSI systems. With this book in hand, engineers will be able to gather geotechnical data, either from rock cuts, drifts or core, and process the information for subsequent analysis. Rich with international case studies and worked out equations, the focus of the book is on the practical gathering information for purposes of analysis and design. Identify the most significant parameters influencing the behaviour of a rock mass Divide a particular rock mass formulation into groups of similar behaviour, rock mass classes of varying quality Provide a basis of understanding the characteristics of each rock mass class Relate the experience of rock conditions at one site to the conditions and experience encountered at others Derive quantitative data and guidelines for engineering design Provide common basis for communication between engineers and geologists

Best Books