Download Free Statistical Ecology A Primer In Methods And Computing Book in PDF and EPUB Free Download. You can read online Statistical Ecology A Primer In Methods And Computing and write the review.

Ecological community data. Spatial pattern analysis. Species-abundance relations. Species affinity. Community classification. Community ordination. Community interpretation.
SUMMARY: An introduction to current statistical topics in community ecology. Presents topics of historical importance (polar ordination); popular topics (diversity indices, including their misuse); powerful statistical tools for analysing ecological patterns (multidimensional scaling). Software contains 21 programs for statistical analysis.
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals. This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management. Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more Deemphasizes computer coding in favor of basic principles Explains how to write out properly factored statistical expressions representing Bayesian models
Ecological Models and Data in R is the first truly practical introduction to modern statistical methods for ecology. In step-by-step detail, the book teaches ecology graduate students and researchers everything they need to know in order to use maximum likelihood, information-theoretic, and Bayesian techniques to analyze their own data using the programming language R. Drawing on extensive experience teaching these techniques to graduate students in ecology, Benjamin Bolker shows how to choose among and construct statistical models for data, estimate their parameters and confidence limits, and interpret the results. The book also covers statistical frameworks, the philosophy of statistical modeling, and critical mathematical functions and probability distributions. It requires no programming background--only basic calculus and statistics. Practical, beginner-friendly introduction to modern statistical techniques for ecology using the programming language R Step-by-step instructions for fitting models to messy, real-world data Balanced view of different statistical approaches Wide coverage of techniques--from simple (distribution fitting) to complex (state-space modeling) Techniques for data manipulation and graphical display Companion Web site with data and R code for all examples
We developed the first edition of this book because we perceived a need for a compilation on study design with application to studies of the ecology, conser- tion, and management of wildlife. We felt that the need for coverage of study design in one source was strong, and although a few books and monographs existed on some of the topics that we covered, no single work attempted to synthesize the many facets of wildlife study design. We decided to develop this second edition because our original goal – synthesis of study design – remains strong, and because we each gathered a substantial body of new material with which we could update and expand each chapter. Several of us also used the first edition as the basis for workshops and graduate teaching, which provided us with many valuable suggestions from readers on how to improve the text. In particular, Morrison received a detailed review from the graduate s- dents in his “Wildlife Study Design” course at Texas A&M University. We also paid heed to the reviews of the first edition that appeared in the literature.
Provides simple explanations of the important concepts in population and community ecology. Provides R code throughout, to illustrate model development and analysis, as well as appendix introducing the R language. Interweaves ecological content and code so that either stands alone. Supplemental web site for additional code.
Regression, analysis of variance, correlation, graphical.

Best Books