Download Free R For Stata Users Statistics And Computing Book in PDF and EPUB Free Download. You can read online R For Stata Users Statistics And Computing and write the review.

Stata is the most flexible and extensible data analysis package available from a commercial vendor. R is a similarly flexible free and open source package for data analysis, with over 3,000 add-on packages available. This book shows you how to extend the power of Stata through the use of R. It introduces R using Stata terminology with which you are already familiar. It steps through more than 30 programs written in both languages, comparing and contrasting the two packages' different approaches. When finished, you will be able to use R in conjunction with Stata, or separately, to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. A glossary defines over 50 R terms using Stata jargon and again using more formal R terminology. The table of contents and index allow you to find equivalent R functions by looking up Stata commands and vice versa. The example programs and practice datasets for both R and Stata are available for download.
Lavishly illustrated with both detailed line drawings and clinical photos, this book offers comprehensive coverage of every aspect of the management of intestinal stomas.
The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.
Updated to reflect the new features of Stata 11, A Gentle Introduction to Stata, Third Edition continues to help new Stata users become proficient in Stata. After reading this introductory text, you will be able to enter, build, and manage a data set as well as perform fundamental statistical analyses. New to the Third Edition A new chapter on the analysis of missing data and the use of multiple-imputation methods Extensive revision of the chapter on ANOVA Additional material on the application of power analysis The book covers data management; good work habits, including the use of basic do-files; basic exploratory statistics, including graphical displays; and analyses using the standard array of basic statistical tools, such as correlation, linear and logistic regression, and parametric and nonparametric tests of location and dispersion. Rather than splitting these topics by their Stata implementation, the material on graphics and postestimation are woven into the text in a natural fashion. The author teaches Stata commands by using the menus and dialog boxes while still stressing the value of do-files. Each chapter includes exercises and real data sets are used throughout.
R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.
Explaining the fundamentals of mediation and moderation analysis, this engaging book also shows how to integrate the two using an innovative strategy known as conditional process analysis. Procedures are described for testing hypotheses about the mechanisms by which causal effects operate, the conditions under which they occur, and the moderation of mechanisms. Relying on the principles of ordinary least squares regression, Andrew Hayes carefully explains the estimation and interpretation of direct and indirect effects, probing and visualization of interactions, and testing of questions about moderated mediation. Examples using data from published studies illustrate how to conduct and report the analyses described in the book. Of special value, the book introduces and documents PROCESS, a macro for SPSS and SAS that does all the computations described in the book. The author's website (www.afhayes.com) offers free downloads of PROCESS plus data files for the book's examples. Unique features include: *Compelling examples (presumed media influence, sex discrimination in the workplace, and more) with real data; boxes with SAS, SPSS, and PROCESS code; and loads of tips, including how to report mediation, moderation and conditional process analyses. *Appendix that presents documentation on use and features of PROCESS. *Online supplement providing data, code, and syntax for the book's examples.
Taking a practical approach that draws on the authors’ extensive teaching, consulting, and research experiences, Applied Survey Data Analysis provides an intermediate-level statistical overview of the analysis of complex sample survey data. It emphasizes methods and worked examples using available software procedures while reinforcing the principles and theory that underlie those methods. After introducing a step-by-step process for approaching a survey analysis problem, the book presents the fundamental features of complex sample designs and shows how to integrate design characteristics into the statistical methods and software for survey estimation and inference. The authors then focus on the methods and models used in analyzing continuous, categorical, and count-dependent variables; event history; and missing data problems. Some of the techniques discussed include univariate descriptive and simple bivariate analyses, the linear regression model, generalized linear regression modeling methods, the Cox proportional hazards model, discrete time models, and the multiple imputation analysis method. The final chapter covers new developments in survey applications of advanced statistical techniques, including model-based analysis approaches. Designed for readers working in a wide array of disciplines who use survey data in their work, this book also provides a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. A guide to the applied statistical analysis and interpretation of survey data, it contains many examples and practical exercises based on major real-world survey data sets. Although the authors use Stata for most examples in the text, they offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s website: http://www.isr.umich.edu/src/smp/asda/

Best Books