Download Free Quantitative Ultrasound In Soft Tissues Book in PDF and EPUB Free Download. You can read online Quantitative Ultrasound In Soft Tissues and write the review.

Due to parallel advances in signal processing and computer hardware in the last 15 years, quantitative ultrasound techniques have reached maturity, allowing for the construction of quantitative maps or images of soft tissues. This book will focus on 5 modern research topics related to quantitative ultrasound of soft tissues: - Spectral-based methods for tissue characterization, tissue typing, cancer detection, etc.; - Envelope statistics analysis as a means of quantifying and imaging tissue properties; - Ultrasound elastography for quantifying elastic properties of tissues (several clinical ultrasound scanners now display elastography images); - Scanning acoustic microscopy for forming images of mechanical properties of soft tissues with micron resolution (desktop size scanners are now available); and - Ultrasound computer tomography for breast cancer imaging (new ultrasound tomography systems have been developed and are currently under evaluation clinically).
Quantitative ultrasound (QUS) of bone is a relatively recent research field. The research community is steadily growing, with interdisciplinary branches in acoustics, medical imaging, biomechanics, biomedical engineering, applied mathematics, bone biology and clinical sciences, resulting in significant achievements in new ultrasound technologies to measure bone, as well as models to elucidate the interaction and the propagation of ultrasonic wave in complex bone structures. Hundreds of articles published in specialists journals are accessible from the Web and from electronic libraries. However, no compilation and synthesis of the most recent and significant research exist. The only book on QUS of bone has been published in 1999 at a time when the propagation mechanisms of ultrasound in bone were still largely unknown and the technology was immature. The research community has now reached a critical size, special sessions are organized in major international meetings (e.g., at the World Congress of Biomechanics, the annual meetings of the Acoustical Society of America, International Bone Densitometry Workshop, etc...). Consequently, the time has come for a completely up to date, comprehensive review of the topic. The book will offer the most recent experimental results and theoretical concepts developed so far and is intended for researchers, graduate or undergraduate students, engineers, and clinicians who are involved in the field. The central part of the book covers the physics of ultrasound propagation in bone. Our goal is to give the reader an extensive view of the mathematical and numerical models as an aid to understand the QUS potential and the types of variables that can be determined by QUS in order to characterize bone strength. The propagation of sound in bone is still subject of intensive research. Different models have been proposed (for example, the Biot theory of poroelasticity and the theory of scattering have been used to describe wave propagation in cancellous bone, whereas propagation in cortical bone falls in the scope of guided waves theories). An extensive review of the models has not been published so far. We intend in this book to present in details the models that are used to solve the direct problem and strategies that are currently developed to address the inverse problem. This will include analytical theories and numerical approaches that have grown exponentially in recent years. Most recent experimental findings and technological developments will also be comprehensively reviewed.
The product of 20 years of research, this book covers topics in soft tissue elasticity in vivo, from measurement techniques to clinical applications. It provides, for the first time, a single source that systematically introduces the various techniques for in vivo measurement of soft tissue elasticity in an effort to ease the difficulty between learning technical details and clinical applications of techniques. Measurement of Soft Tissue Elasticity in Vivo: Techniques and Applications presents an overview of the existing measurement methods, their physical principles, assumptions, advantages, and disadvantages. Clinical applications discussed include assessment of tissue fibrosis after radiotherapy, articular cartilage degeneration, muscle contraction, cancer staging, liver fibrosis progression, diabetic foot ulceration, cornea stiffening, and wound healing. Techniques covered include shear wave propagation methods, vibro-ultrasound methods, dynamic holography, ultrasound and other indentation methods, and OCT-based and other suction measurement methods. The book also proposes two critical directions for future research in the field. One is to standardize the terms, parameters, and test protocols used in different fields. The second proposal is to standardize one technique to dominate the field, while devices can be adapted to fit the measuring requirements of different tissues. In doing so, the results obtained for the same tissue by different clinicians can be comparable and a standardized protocol can be established. This book bridges the gap between the complexity of measuring techniques and simplicity and accuracy of their clinical use. Its comprehensiveness and clarity help new engineers in the field develop analytical methods and allow clinicians to use these techniques in their practice with greater confidence.
This book constitutes the refereed proceedings of the 15th International Conference on Information Processing in Medical Imaging, IPMI'97, held in Poultney, Vermont, USA, in June 1997. The 27 revised full papers presented were selected from a total of 96 submissions; also included are 31 poster presentations. The book is divided into topical sections on shape models and matching, novel imaging methods, segmentation, image quality and statistical character of measured data, registration/mapping, statistical models in functional neuroimaging, and MR analysis and processing.
Ultrasonic Scattering in Biological Tissues contains 14 chapters written by world-renowned authorities who describe current work related to theoretical and experimental aspects of ultrasonic scattering phenomenon in biological tissues. Introductory material regarding ultrasonic scattering in biological tissues is presented, followed by discussions on theoretical treatments, experimental approaches, in vitro results on selective tissues, in vivo results on various tissues, and the current status of quantitative backscatter imaging. Ultrasonic Scattering in Biological Tissues will be an excellent reference for biomedical engineers, ultrasound specialists, biophysicists, and radiology researchers.
Neuromuscular Ultrasound demonstrates the use of ultrasound as an alternative to electrodiagnosis in the evaluation of neuromuscular disorders through detailed descriptions and clear illustrations. Drs. Francis Walker and Michael S. Cartwright discuss techniques for visualizing muscles and nerves without painful testing for better patient compliance and more efficient diagnosis. Color illustrations, pearls for the clinician, and ultrasound videos online at, ensure that you’ll be able to apply this technology effectively in your practice. Access the fully searchable text online at, along with ultrasound videos that demonstrate ultrasound evaluation in real time. Diagnose and manage your patients more quickly and easily by visualizing muscles and nerves without painful testing. Master the nuances of using ultrasound through the visual instruction of clear images and illustrations. Minimize patient discomfort while maximizing optimal patient evaluation with a practical focus that covers using ultrasound as a screening tool, provides clinical pearls, and includes comparisons to electrodiagnosis. Apply the full range of ultrasound applications, including interventional uses (such as ultrasound-guided botulinum toxin and steroid injections), ultrasound of polyneuropathies (often found in diabetics), and more.

Best Books