Download Free Population Ecology First Principles Book in PDF and EPUB Free Download. You can read online Population Ecology First Principles and write the review.

Ecology is capturing the popular imagination like never before, with issues such as climate change, species extinctions, and habitat destruction becoming ever more prominent. At the same time, the science of ecology has advanced dramatically, growing in mathematical and theoretical sophistication. Here, two leading experts present the fundamental quantitative principles of ecology in an accessible yet rigorous way, introducing students to the most basic of all ecological subjects, the structure and dynamics of populations. John Vandermeer and Deborah Goldberg show that populations are more than simply collections of individuals. Complex variables such as distribution and territory for expanding groups come into play when mathematical models are applied. Vandermeer and Goldberg build these models from the ground up, from first principles, using a broad range of empirical examples, from animals and viruses to plants and humans. They address a host of exciting topics along the way, including age-structured populations, spatially distributed populations, and metapopulations. This second edition of Population Ecology is fully updated and expanded, with additional exercises in virtually every chapter, making it the most up-to-date and comprehensive textbook of its kind. Provides an accessible mathematical foundation for the latest advances in ecology Features numerous exercises and examples throughout Introduces students to the key literature in the field The essential textbook for advanced undergraduates and graduate students An online illustration package is available to professors
How can the future number of deer, agricultural pests, or cod be calculated based on the present number of individuals and their age distribution? How long will it take for a viral outbreak in a particular city to reach another city five hundred miles away? In addressing such basic questions, ecologists today are as likely to turn to complicated differential equations as to life histories--a dramatic change from thirty years ago. Population ecology is the mathematical backbone of ecology. Here, two leading experts provide the underlying quantitative concepts that all modern-day ecologists need. John Vandermeer and Deborah Goldberg show that populations are more than simply collections of individuals. Complex variables such as the size distribution of individuals and allotted territory for expanding groups come into play when mathematical models are applied. The authors build these models from the ground up, from first principles, using a much broader range of empirical examples--from plants to animals, from viruses to humans--than do standard texts. And they address several complicating issues such as age-structured populations, spatially distributed populations, and metapopulations. Beginning with a review of elementary principles, the book goes on to consider theoretical issues involving life histories, complications in the application of the core principles, statistical descriptions of spatial aggregation of individuals and populations as well as population dynamic models incorporating spatial information, and introductions to two-species interactions. Complemented by superb illustrations that further clarify the links between the mathematical models and biology, Population Ecology is the most straightforward and authoritative overview of the field to date. It will have broad appeal among undergraduates, graduate students, and practicing ecologists.
Introduction to Population Ecology, 2nd Edition is a comprehensive textbook covering all aspects of population ecology. It uses a wide variety of field and laboratory examples, botanical to zoological, from the tropics to the tundra, to illustrate the fundamental laws of population ecology. Controversies in population ecology are brought fully up to date in this edition, with many brand new and revised examples and data. Each chapter provides an overview of how population theory has developed, followed by descriptions of laboratory and field studies that have been inspired by the theory. Topics explored include single-species population growth and self-limitation, life histories, metapopulations and a wide range of interspecific interactions including competition, mutualism, parasite-host, predator-prey and plant-herbivore. An additional final chapter, new for the second edition, considers multi-trophic and other complex interactions among species. Throughout the book, the mathematics involved is explained with a step-by-step approach, and graphs and other visual aids are used to present a clear illustration of how the models work. Such features make this an accessible introduction to population ecology; essential reading for undergraduate and graduate students taking courses in population ecology, applied ecology, conservation ecology, and conservation biology, including those with little mathematical experience.
Accompanying CD-ROM contains shell programs that provide access to the RAMAS Ecolab.
This second edition provides authoritative guidance on research methodology for plant population ecology. Practical advice is provided to assist senior undergraduates and post-graduate students, and all researchers, design their own field and greenhouse experiments and establish a research programme in plant population ecology.
Introduction to Population Ecology is an accessible and up-to-date textbook covering all aspects of population ecology. Discusses field and laboratory data to illustrate the fundamental laws of population ecology. Provides an overview of how population theory has developed. Explores single-species population growth and self-limitation; metapopulations; and a broad range of interspecific interactions including parasite-host, predator-prey, and plant-herbivore. Keeps the mathematics as simple as possible, using a careful step-by-step approach and including graphs and other visual aids to help understanding. Artwork from the book is available to instructors online at www.blackwellpublishing.com/rockwood and by request on CD-ROM.
Biogeography was stuck in a "natural history phase" dominated by the collection of data, the young Princeton biologists Robert H. MacArthur and Edward O. Wilson argued in 1967. In this book, the authors developed a general theory to explain the facts of island biogeography. The theory builds on the first principles of population ecology and genetics to explain how distance and area combine to regulate the balance between immigration and extinction in island populations. The authors then test the theory against data. The Theory of Island Biogeography was never intended as the last word on the subject. Instead, MacArthur and Wilson sought to stimulate new forms of theoretical and empirical studies, which will lead in turn to a stronger general theory. Even a third of a century since its publication, the book continues to serve that purpose well. From popular books like David Quammen's Song of the Dodo to arguments in the professional literature, The Theory of Island Biogeography remains at the center of discussions about the geographic distribution of species. In a new preface, Edward O. Wilson reviews the origins and consequences of this classic book.

Best Books