Download Free Optical Imaging Techniques In Cell Biology Second Edition Book in PDF and EPUB Free Download. You can read online Optical Imaging Techniques In Cell Biology Second Edition and write the review.

Optical Imaging Techniques in Cell Biology, Second Edition covers the field of biological microscopy, from the optics of the microscope to the latest advances in imaging below the traditional resolution limit. It includes the techniques—such as labeling by immunofluorescence and fluorescent proteins—which have revolutionized cell biology. Quantitative techniques such as lifetime imaging, ratiometric measurement, and photoconversion are all covered in detail. Expanded with a new chapter and 40 new figures, the second edition has been updated to cover the latest developments in optical imaging techniques. Explanations throughout are accurate, detailed, but as far as possible non-mathematical. This edition includes appendices with useful practical protocols, references, and suggestions for further reading. Color figures are integrated throughout.
This text draws together the fields of optical microscopy and optical data storage, in a unique compilation of valuable and novel scientific work that is scarcely to be found elsewhere. The contributing authors are unquestioned leaders of their respective fields.
The use of fluorescent and luminescent probes to measure biological function has increased dramatically since publication of the First Edition due to their improved speed, safety, and power of analytical approach. This eagerly awaited Second Edition, also edited by Bill Mason, contains 19 new chapters and over two thirds new material, and is a must for all life scientists using optical probes. The contents include discussion of new optical methodologies for detection of proteins, DNA and other molecules, as well as probes for ions, receptors, cellular components, and gene expression. Emerging and advanced technologies for probe detection such as confocal laser scanning microscopy are also covered. This book will be essential for those embarking on work in the field or using new methods to enhance their research. TOPICS COVERED: * Single and multiphoton confocal microscopy * Applications of green fluorescent protein and chemiluminescent reporters to gene expression studies * Applications of new optical probes for imaging proteins in gels * Probes and detection technologies for imaging membrane potential in live cells * Use of optical probes to detect microorganisms * Raman and confocal raman microspectroscopy * Fluorescence lifetime imaging microscopy * Digital CCD cameras and their application in biological microscopy
The First Book on CRS Microscopy Compared to conventional Raman microscopy, coherent Raman scattering (CRS) allows label-free imaging of living cells and tissues at video rate by enhancing the weak Raman signal through nonlinear excitation. Edited by pioneers in the field and with contributions from a distinguished team of experts, Coherent Raman Scattering Microscopy explains how CRS can be used to obtain a point-by-point chemical map of live cells and tissues. In color throughout, the book starts by establishing the foundation of CRS microscopy. It discusses the principles of nonlinear optical spectroscopy, particularly coherent Raman spectroscopy, and presents the theories of contrast mechanisms pertinent to CRS microscopy. The text then provides important technical aspects of CRS microscopy, including microscope construction, detection schemes, and data analyses. It concludes with a survey of applications that demonstrate how CRS microscopy has become a valuable tool in biomedicine. Due to its label-free, noninvasive examinations of living cells and organisms, CRS microscopy has opened up exciting prospects in biology and medicine—from the mapping of 3D distributions of small drug molecules to identifying tumors in tissues. An in-depth exploration of the theories, technology, and applications, this book shows how CRS microscopy has impacted human health and will deepen our understanding of life processes in the future.
Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.
Fundamentals of Light Microscopy and Electronic Imaging, Second Edition provides a coherent introduction to the principles and applications of the integrated optical microscope system, covering both theoretical and practical considerations. It expands and updates discussions of multi-spectral imaging, intensified digital cameras, signal colocalization, and uses of objectives, and offers guidance in the selection of microscopes and electronic cameras, as well as appropriate auxiliary optical systems and fluorescent tags. The book is divided into three sections covering optical principles in diffraction and image formation, basic modes of light microscopy, and components of modern electronic imaging systems and image processing operations. Each chapter introduces relevant theory, followed by descriptions of instrument alignment and image interpretation. This revision includes new chapters on live cell imaging, measurement of protein dynamics, deconvolution microscopy, and interference microscopy. PowerPoint slides of the figures as well as other supplementary materials for instructors are available at a companion website: www.wiley.com/go/murphy/lightmicroscopy
Lippincott's Illustrated Reviews: Cell and Molecular Biology offers a highly visual presentation of essential cell and molecular biology, focusing on topics related to human health and disease. This new addition to the internationally best-selling Lippincott's Illustrated Reviews Series includes all the popular features of the series: an abundance of full-color annotated illustrations, expanded outline format, chapter summaries, review questions, and case studies that link basic science to real-life clinical situations. The book can be used as a review text for a stand-alone cell biology course in medical, health professions, and upper-level undergraduate programs, or in conjunction with Lippincott's Illustrated Reviews: Biochemistry for integrated courses. A companion Website features the fully searchable online text, an interactive Question Bank for students, and an Image Bank for instructors to create PowerPoint® presentations.

Best Books