Download Free Mathematical Proofs Book in PDF and EPUB Free Download. You can read online Mathematical Proofs and write the review.

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses.
PaulErdos ? likedtotalkaboutTheBook,inwhichGodmaintainstheperfect proofsformathematicaltheorems,followingthedictumofG. H. Hardythat there is no permanent place for ugly mathematics. Erdos ? also said that you need not believe in God but, as a mathematician, you should believe in The Book. A few years ago, we suggested to him to write up a ?rst (and very modest) approximation to The Book. He was enthusiastic about the idea and, characteristically, went to work immediately, ?lling page after page with his suggestions. Our book was supposed to appear in March 1998 as a present to Erdos ? ’ 85th birthday. With Paul’s unfortunate death in the summer of 1996, he is not listed as a co-author. Instead this book is dedicated to his memory. ? Paul Erdos We have no de?nition or characterization of what constitutes a proof from The Book: all we offer here is the examples that we have selected, h- ing that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations. We also hope that our readers will enjoy this despite the imperfections of our exposition. The selection is to a ? great extent in?uencedby Paul Erdos himself. A largenumberof the topics were suggested by him, and many of the proofs trace directly back to him, or were initiated by his supreme insight in asking the right question or in makingthe rightconjecture. So to a largeextentthisbookre?ectstheviews of Paul Erdos ? as to what should be considered a proof from The Book.
The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics
Introduction to Mathematical Proofs helps students develop the necessary skills to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. This new edition includes more than 125 new exercises in sections titled More Challenging Exercises. Also, numerous examples illustrate in detail how to write proofs and show how to solve problems. These examples can serve as models for students to emulate when solving exercises. Several biographical sketches and historical comments have been included to enrich and enliven the text. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It prepares them to succeed in more advanced mathematics courses, such as abstract algebra and analysis.
Proof" has been & remains one of the concepts which characterises mathematics. Covering basic propositional & predicate logic as well as discussing axiom systems & formal proofs, the book seeks to explain what mathematicians understand by proofs & how they are communicated. The authors explore the principle techniques of direct & indirect proof including induction, existence & uniqueness proofs, proof by contradiction, constructive & non-constructive proofs, etc. Many examples from analysis & modern algebra are included. The exceptionally clear style & presentation ensures that the book will be useful & enjoyable to those studying & interested in the notion of mathematical "proof.
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Almost every student has to study some sort of mathematical proofs, whether it be in geometry, trigonometry, or with higher-level topics. In addition, mathematical theorems have become an interesting course for many students outside of the mathematical arena, purely for the reasoning and logic that is needed to complete them. Therefore, it is not uncommon to have philosophy and law students grappling with proofs. This book is the perfect resource for demystifying the techniques and principles that govern the mathematical proof area, and is done with the standard “Demystified” level, questions and answers, and accessibility.

Best Books