Download Free Introductory Analysis A Deeper View Of Calculus Book in PDF and EPUB Free Download. You can read online Introductory Analysis A Deeper View Of Calculus and write the review.

Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts. * Written in an engaging, conversational tone and readable style while softening the rigor and theory * Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students * A thorough concentration of basic topics of calculus * Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use * Covers natural logarithms and exponential functions * Provides the computational techniques often encountered in basic calculus
This unique book provides a new and well-motivated introduction to calculus and analysis, historically significant fundamental areas of mathematics that are widely used in many disciplines. It begins with familiar elementary high school geometry and algebra, and develops important concepts such as tangents and derivatives without using any advanced tools based on limits and infinite processes that dominate the traditional introductions to the subject. This simple algebraic method is a modern version of an idea that goes back to René Descartes and that has been largely forgotten. Moving beyond algebra, the need for new analytic concepts based on completeness, continuity, and limits becomes clearly visible to the reader while investigating exponential functions.The author carefully develops the necessary foundations while minimizing the use of technical language. He expertly guides the reader to deep fundamental analysis results, including completeness, key differential equations, definite integrals, Taylor series for standard functions, and the Euler identity. This pioneering book takes the sophisticated reader from simple familiar algebra to the heart of analysis. Furthermore, it should be of interest as a source of new ideas and as supplementary reading for high school teachers, and for students and instructors of calculus and analysis.
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.
Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.
Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.

Best Books