Download Free Introductory Analysis A Deeper View Of Calculus Book in PDF and EPUB Free Download. You can read online Introductory Analysis A Deeper View Of Calculus and write the review.

Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts. * Written in an engaging, conversational tone and readable style while softening the rigor and theory * Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students * A thorough concentration of basic topics of calculus * Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use * Covers natural logarithms and exponential functions * Provides the computational techniques often encountered in basic calculus
Part 1 begins with an overview of properties of the real numbers and starts to introduce the notions of set theory. The absolute value and in particular inequalities are considered in great detail before functions and their basic properties are handled. From this the authors move to differential and integral calculus. Many examples are discussed. Proofs not depending on a deeper understanding of the completeness of the real numbers are provided. As a typical calculus module, this part is thought as an interface from school to university analysis. Part 2 returns to the structure of the real numbers, most of all to the problem of their completeness which is discussed in great depth. Once the completeness of the real line is settled the authors revisit the main results of Part 1 and provide complete proofs. Moreover they develop differential and integral calculus on a rigorous basis much further by discussing uniform convergence and the interchanging of limits, infinite series (including Taylor series) and infinite products, improper integrals and the gamma function. In addition they discussed in more detail as usual monotone and convex functions. Finally, the authors supply a number of Appendices, among them Appendices on basic mathematical logic, more on set theory, the Peano axioms and mathematical induction, and on further discussions of the completeness of the real numbers. Remarkably, Volume I contains ca. 360 problems with complete, detailed solutions.
This is a book about mathematics and mathematical thinking. It is intended for the serious learner who is interested in studying some deductive strategies in the context of a variety of elementary mathematical situations. No background beyond single-variable calculus is presumed.
This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.

Best Books