Download Free In Situ Characterization Of Heterogeneous Catalysts Book in PDF and EPUB Free Download. You can read online In Situ Characterization Of Heterogeneous Catalysts and write the review.

Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts features contributions from leading experts in the field of catalysis. It begins with an introduction to the fundamentals and then covers: Characterization of electronic and structural properties of catalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-ray diffraction, neutron scattering, and pair distribution function analysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates with catalyst surfaces, including infrared spectroscopy, Raman spectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on the structural properties of catalysts with techniques that facilitate the study of surface reactions Throughout the book, detailed examples illustrate how techniques for studying catalysts and reaction mechanisms can be applied to solve a broad range of problems in heterogeneous catalysis. Detailed figures help readers better understand how and why the techniques discussed in the book work. At the end of each chapter, an extensive set of references leads to the primary literature in the field. By explaining step by step modern techniques for the in-situ characterization of heterogeneous catalysts, this book enables chemical scientists and engineers to better understand catalyst behavior and design new catalysts for green, sustainable fuel and chemical production.
Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts features contributions from leading experts in the field of catalysis. It begins with an introduction to the fundamentals and then covers: Characterization of electronic and structural properties of catalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-ray diffraction, neutron scattering, and pair distribution function analysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates with catalyst surfaces, including infrared spectroscopy, Raman spectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on the structural properties of catalysts with techniques that facilitate the study of surface reactions Throughout the book, detailed examples illustrate how techniques for studying catalysts and reaction mechanisms can be applied to solve a broad range of problems in heterogeneous catalysis. Detailed figures help readers better understand how and why the techniques discussed in the book work. At the end of each chapter, an extensive set of references leads to the primary literature in the field. By explaining step by step modern techniques for the in-situ characterization of heterogeneous catalysts, this book enables chemical scientists and engineers to better understand catalyst behavior and design new catalysts for green, sustainable fuel and chemical production.
This book presents both the fundamentals concepts and latest achievements of a field that is growing in importance since it represents a possible solution for global energy problems. It focuses on an atomic-level understanding of heterogeneous catalysis involved in important energy conversion processes. It presents a concise picture for the entire area of heterogeneous catalysis with vision at the atomic- and nano- scales, from synthesis, ex-situ and in-situ characterization, catalytic activity and selectivity, to mechanistic understanding based on experimental exploration and theoretical simulation. The book: Addresses heterogeneous catalysis, one of the crucial technologies employed within the chemical and energy industries Presents the recent advances in the synthesis and characterization of nanocatalysts as well as a mechanistic understanding of catalysis at atomic level for important processes of energy conversion Provides a foundation for the potential design of revolutionarily new technical catalysts and thus the further development of efficient technologies for the global energy economy Includes both theoretical studies and experimental exploration Is useful as both a textbook for graduate and undergraduate students and a reference book for scientists and engineers in chemistry, materials science, and chemical engineering
This two-volume book provides an overview of physical techniques used to characterize the structure of solid materials, on the one hand, and to investigate the reactivity of their surface, on the other. Therefore this book is a must-have for anyone working in fields related to surface reactivity. Among the latter, and because of its most important industrial impact, catalysis has been used as the directing thread of the book. After the preface and a general introduction to physical techniques by M. Che and J.C. V?drine, two overviews on physical techniques are presented by G. Ertl and Sir J.M. Thomas for investigating model catalysts and porous catalysts, respectively. The book is organized into four parts: Molecular/Local Spectroscopies, Macroscopic Techniques, Characterization of the Fluid Phase (Gas and/ or Liquid), and Advanced Characterization. Each chapter focuses upon the following important themes: overview of the technique, most important parameters to interpret the experimental data, practical details, applications of the technique, particularly during chemical processes, with its advantages and disadvantages, conclusions.
This long-awaited reference source is the first book to focus on this important and hot topic. As such, it provides examples from a wide array of fields where catalyst design has been based on new insights and understanding, presenting such modern and important topics as self-assembly, nature-inspired catalysis, nano-scale architecture of surfaces and theoretical methods. With its inclusion of all the useful and powerful tools for the rational design of catalysts, this is a true "must have" book for every researcher in the field.
"A key technology in the chemical and energy industries, heterogeneous catalysis is growing in importance owing to its potential for solving global energy problems. This volume covers both fundamental concepts and recent advances in the field, offering an in-depth look at the synthesis and characterization of nanocatalysts as well as a mechanistic understanding of catalysis at atomic level for important processes of energy conversion. Comprehensive and authoritative, the book provides scientists and engineers with a foundation for pioneering the next technical catalysts for energy efficient technologies"--

Best Books