Download Free Heat And Cold Storage With Pcm Heat And Mass Transfer Book in PDF and EPUB Free Download. You can read online Heat And Cold Storage With Pcm Heat And Mass Transfer and write the review.

The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy consumption. The new IPCC report makes clear that - mankind plays a dominant role on climate change due to CO emissions from en- 2 ergy consumption, and that a significant reduction in CO emissions is necessary 2 within decades. At the same time, the supply of fossil energy sources like coal, oil, and natural gas becomes less reliable. In spring 2008, the oil price rose beyond 100 $/barrel for the first time in history. It is commonly accepted today that we have to reduce the use of fossil fuels to cut down the dependency on the supply countries and to reduce CO emissions. The use of renewable energy sources and 2 increased energy efficiency are the main strategies to achieve this goal. In both strategies, heat and cold storage will play an important role. People use energy in different forms, as heat, as mechanical energy, and as light. With the discovery of fire, humankind was the first time able to supply heat and light when needed. About 2000 years ago, the Romans started to use ceramic tiles to store heat in under floor heating systems. Even when the fire was out, the room stayed warm. Since ancient times, people also know how to cool food with ice as cold storage.
Sustainability of environment is an emerging global issue at present. Unsustainable or deteriorating environment is a matter of concern as it has threatened the survival of living creatures. Recently, climate change has been matter of great concern at a global platform owing to imbalances in natural environment. Increasing population has increased the demand for energy, which has ultimately put pressure on natural resources and caused a paradigm shift from resource generation to exploitation. Emerging Energy Alternatives for Sustainable Environment aims to address the role of sustainable technologies in energy generation options for clean environment. It covers a wide spectrum of energy generation approaches, with an emphasis on five key topics: (i) renewable energy sources and recent advances, (ii) emerging green technologies for sustainable development, (iii) assessment of biomass for sustainable bioenergy production, (iv) solid waste management and its potential for energy generation, and (v) solar energy applications, storage system, and heat transfer. This book provides essential and comprehensive knowledge of green energy technologies with different aspects for engineers, technocrats and researchers working in the industry, universities, and research institutions. The book is also very useful for undergraduate and graduate students of science and engineering who are keen to know about the development of renewable energy products and their corresponding processes.
A carefully selected compilation of the most relevant articles from the online edition of "ULLMANN's Encyclopedia of Industrial Chemistry", this three-volume handbook contains a wealth of information on energy sources, energy generation and storage, fossil and renewable fuels as well as the associated processing technology. Fossil as well as renewable fuels, nuclear technology, power generation and storage technologies are treated side by side, providing a unique overview of the entire global energy industry. New or updated articles include such classical topics as coal technologies, oil and gas, as well as cutting-edge technologies, such as biogas, thermoelectricity and solar technology. The result is an in-depth survey of industrial-scale energy technology.
This book gathers an in-depth collection of 45 selected papers presented at the Global Conference on Global Warming 2014 in Beijing, China, covering a broad variety of topics from the main principles of thermodynamics and their role in design, analysis, and the improvements in performance of energy systems to the potential impact of global warming on human health and wellbeing. Given energy production’s role in contributing to global warming and climate change, this work provides solutions to global warming from the point of view of energy. Incorporating multi-disciplinary expertise and approaches, it provides a platform for the analysis of new developments in the area of global warming and climate change, as well as potential energy solutions including renewable energy, energy efficiency, energy storage, hydrogen production, CO2 capture and environmental impact assessment. The research and analysis presented herein will benefit international scientists, researchers, engineers, policymakers and all others with an interest in global warming and its potential solutions.
This monograph comprehensively describes phenomena of heat flow during phase change as well as the dynamics of liquid solidification, i.e. the development of a solidified layer. The book provides the reader with basic knowledge for practical designs, as well as with equations which describe processes of energy transformation. The target audience primarily comprises researchers and experts in the field of heat flow, but the book may also be beneficial for both practicing engineers and graduate students.
Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance characteristics of building enclosure components containing PCMs, and present different laboratory and field testing methods. Finally, a wide range of PCM building products are presented which are commercially available worldwide. This book is intended for students and researchers of mechanical, architectural and civil engineering and postgraduate students of energy analysis, dynamic design of building structures, and dynamic testing procedures. It also provides a useful resource for professionals involved in architectural and mechanical-civil engineering design, thermal testing and PCM manufacturing.
This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims to benefit a broad readership, from undergraduate/graduate students to researchers working on renewable energy.

Best Books