Download Free Groundwater Hydrology Engineering Planning And Management Book in PDF and EPUB Free Download. You can read online Groundwater Hydrology Engineering Planning And Management and write the review.

Increasing demand for water, higher standards of living, depletion of resources of acceptable quality, and excessive water pollution due to urban, agricultural, and industrial expansions have caused intense environmental, social, economic, and political predicaments. More frequent and severe floods and droughts have changed the ability and resiliency of water infrastructure systems to operate and provide services to the public. These concerns and issues have also changed the way we plan and manage our surface and groundwater resources. Groundwater Hydrology: Engineering, Planning, and Management presents a compilation of the state-of-the-art subjects and techniques in the education and practice of groundwater and describes them in a systematic and integrated fashion useful for undergraduate and graduate students and practitioners. The book develops a system view of groundwater fundamentals and model-making techniques through the application of science, engineering, planning, and management principles. It discusses the classical issues in groundwater hydrology and hydraulics followed by coverage of water quality issues. The authors delineate the process of analyzing data, identification, and parameter estimation; tools and model-building techniques and the conjunctive use of surface and groundwater techniques; aquifer restoration, remediation, and monitoring techniques; and analysis of risk. They touch on groundwater risk and disaster management and then explore the impact of climate change on groundwater and discuss the tools needed for analyzing future data realization and downscaling large-scale low-resolution data to local watershed and aquifer scales for impact studies. The combined coverage of engineering and planning tools and techniques as well as specific challenges for restoration and remediation of polluted aquifers sets this book apart. It also introduces basic tools and techniques for making decisions about and planning for future groundwater development activities, taking into account regional sustainability issues. An examination of the interface between groundwater challenges, the book demonstrates how to apply systems analysis techniques to groundwater engineering, planning, and management.
Groundwater Hydrology of Water Resource Series Water is an essential environmental resource and one that needs to be properly managed. As the world places more emphasis on sustainable water supplies, the demand for expertise in hydrology and water resources continues to increase. This series is intended for professional engineers, who seek a firm foundation in hydrology and an ability to apply this knowledge to solve problems in water resource management. Future books in the series are: Groudwater Hydrology of Springs (2009), Groudwater Hydrology of River Basins (2009), Groudwater Hydrology of Aquifers (2010), and Groudwater Hydrology of Wetlands (2010). First utilized as a primary source of drinking water in the ancient world, springs continue to supply many of the world's cities with water. In recent years their long-term sustainability is under pressure due to an increased demand from groundwater users. Edited by two world-renowned hydrologists, Groundwater Hydrology of Springs: Theory, Management, and Sustainability will provide civil and environmental engineers with a comprehensive reference for managing and sustaining the water quality of Springs. With contributions from experts from around the world, this book cover many of the world's largest springs, providing a unique global perspective on how engineers around the world are utilizing engineering principles for coping with problems such as: mismanagement, overexploitation and their impacts both water quantity and quality. The book will be divided into two parts: part one will explain the theory and principles of hydrology as they apply to Springs while part two will provide a rare look into the engineering practices used to manage some of the most important Springs from around the world. Description of the spring and the aquifer feeding it Latest groundwater and contaminant transport models Description of sources of aquifer use. Understanding of contamination and/or possible contamination. A plan for management and sustainability
The hydrologic cycle is a constant movement of water above, on, and below the earth's surface. It is a cycle that replenishes ground water supplies. It begins as water vaporizes into the atmosphere from vegetation, soil, lakes, rivers, snowfields and oceans - a process called evapotranspiration. As the water vapour rises it condenses to form clouds that return water to the land through precipitation: rain, snow, or hail. Precipitation falls on the earth and either percolates into the soil or flows across the ground. Usually it does both. This edited volume explores this topic.
This book is divided into four parts. The first part, Preliminaries, begins by introducing the basic theme of the book. It provides an overview of the current status of water resources utilization, the likely scenario of future demands, and advantages and disadvantages of systems techniques. An understanding of how the hydrological data are measured and processed is important before undertaking any analysis. The discussion is extended to emerging techniques, such as Remote Sensing, GIS, Artificial Neural Networks, and Expert Systems. The statistical tools for data analysis including commonly used probability distributions, parameter estimation, regression and correlation, frequency analysis, and time-series analysis are discussed in a separate chapter. Part 2 Decision Making, is a bouquet of techniques organized in 4 chapters. After discussing optimization and simulation, the techniques of economic analysis are covered. Recently, environmental and social aspects, and rehabilitation and resettlement of project-affected people have come to occupy a central stage in water resources management and any good book is incomplete unless these topics are adequately covered. The concept of rational decision making along with risk, reliability, and uncertainty aspects form subject matter of a chapter. With these analytical tools, the practitioner is well equipped to take a rational decision for water resources utilization. Part 3 deals with Water Resources Planning and Development. This part discusses the concepts of planning, the planning process, integrated planning, public involvement, and reservoir sizing. The last part focuses on Systems Operation and Management. After a resource is developed, it is essential to manage it in the best possible way. Many dams around the world are losing some storage capacity every year due to sedimentation and therefore, the assessment and management of reservoir sedimentation is described in details. No analysis of water resources systems is complete without consideration of water quality. A river basin is the natural unit in which water occurs. The final chapter discusses various issues related to holistic management of a river basin.
The rapidly increasing population and urbanization has led to over exploitation of groundwater resources around the world. This book deals with the planning and management of groundwater resources. The chapters discussed in this book encompass the recent studies in the field of groundwater hydrology and discusses concepts like biogeochemical processes, engineering hydrology, global groundwater resources, etc. It attempts to assist those with a goal of delving into the field of groundwater resource management. The book will be a crucial source of knowledge for all the students and academicians engaged in this field.
This book presents a systematic approach to understanding and applying the principles of hydrology and hydroclimatology, examining the interactions among different components of the water cycle. It takes a fresh look at the fundamentals and challenges in hydrologic and hydroclimatic systems as well as climate change. The author describes the application of nontraditional data sets and new investigation techniques to water-related problems. He also examines long lead forecasting and simulation, time series analysis, and risk and uncertainty in hydrologic design.
State-of-the-art GIS spatial data management and analysis tools are revolutionizing the field of water resource engineering. Familiarity with these technologies is now a prerequisite for success in engineers’ and planners’ efforts to create a reliable infrastructure. GIS in Water Resource Engineering presents a review of the concepts and applications of GIS in the various sub-fields of water resource engineering. After a summary review of analyses and database functions, the book addresses concepts and applications in the following areas: Surface Water Hydrology Groundwater Hydrology Water Supply and Irrigation systems Wastewater and Stormwater Systems Floodplain Management Water Quality Water Resource Monitoring and Forecasting River Basin Planning and Management The book develops a general understanding of the nature of GIS and how it is used to create and analyze geographic data. The author first introduces primary field data collection methods and describes procedures for interpretation and analysis. The second portion of the book focuses on the linkage of GIS data with water resource analysis and management models. Applications are presented with descriptions of GIS database development, analysis background theory, and model integration with GIS. The profound impact of GIS systems on water resources engineering continues to grow. GIS in Water Resource Engineering arms engineers and planners with an arsenal of tools to assist in the creation of a reliable, environmentally sensitive, infrastructure.

Best Books