Download Free Gmdh Methodology And Implementation In Cwith Cd Rom Book in PDF and EPUB Free Download. You can read online Gmdh Methodology And Implementation In Cwith Cd Rom and write the review.

Group Method of Data Handling (GMDH) is a typical inductive modeling method built on the principles of self-organization. Since its introduction, inductive modeling has been developed and applied to complex systems in areas like prediction, modeling, clusterization, system identification, as well as data mining and knowledge extraction technologies, to several fields including social science, science, engineering, and medicine. This book makes error-free codes available to end-users so that these codes can be used to understand the implementation of GMDH, and then create opportunities to further develop the variants of GMDH algorithms. C-language has been chosen because it is a basic language commonly taught in the first year in computer programming courses in most universities and colleges, and the compiled versions could be used for more meaningful practical applications where security is necessary. Contents:Introduction (Godfrey C Onwubolu)GMDH Multilayered Iterative Algorithm (MIA) (Godfrey C Onwubolu)GMDH Multilayered Algorithm Using Prior Information (Alexandr Kiryanov)Combinatorial (COMBI) Algorithm (Oleksiy Koshulko, Anatoliy Koshulko and Godfrey C Onwubolu)GMDH Harmonic Algorithm (Godfrey C Onwubolu)GMDH-Based Modified Polynomial Neural Network Algorithm (Alexander Tyryshkin, Anatoliy Andrakhanov and Andrey Orlov)GMDH-Clustering (Lyudmyla Sarycheva and Alexander Sarychev)Multiagent Clustering Algorithm (Oleksii Oliinyk, Sergey Subbotin and Andrii Oliinyk)Analogue Complexing Algorithm (Dmytro Zubov)GMDH-Type Neural Network and Genetic Algorithm (Saeed Fallahi, Meysam Shaverdi and Vahab Bashiri) Readership: Researchers, professionals, and senior undergraduate students in artificial intelligence, neural networks, decision sciences, and innovation technology. Key Features:No other book in the market makes error-free codes so readily available to the publicClearly presents the main variants of GMDH and supporting codes for users to understand the concepts involved, apply them, and build on the available codesContributors are world-renowned researchers in GMDHKeywords:GMDH;Inductive Modeling;MIA;COMBI;PNN;GMDH-Analog Complexing
Group method of data handling (GMDH) is a typical inductive modeling method built on the principles of self-organization. Since its introduction, inductive modelling has been developed to support complex systems in prediction, clusterization, system identification, as well as data mining and knowledge extraction technologies in social science, science, engineering, and medicine. This is the first book to explore GMDH using MATLAB (matrix laboratory) language. Readers will learn how to implement GMDH in MATLAB as a method of dealing with big data analytics. Error-free source codes in MATLAB have been included in supplementary material (accessible online) to assist users in their understanding in GMDH and to make it easy for users to further develop variations of GMDH algorithms. Contents:Basic/Standard GMDH:Introduction (Godfrey C Onwubolu)GMDH Multilayered Algorithm (Godfrey C Onwubolu)GMDH Multilayered Algorithm in MATLAB (Mohammed Abdalla Ayoub Mohammed)Hybrid GMDH System:GMDH-Based Polynomial Neural Network Algorithm in MATLAB (Elaine Inácio Bueno, Iraci Martinez Pereira and Antonio Teixeira e Silva)Designing GMDH Model Using Modified Levenberg Marquardt Technique in Matlab (Maryam Pournasir Roudbaneh)Group Method of Data Handing Using Discrete Differential Evolution in Matlab (Donald Davendra, Godfrey Onwubolu and Ivan Zelinka) Readership: Professionals and students interested in data mining and analytics.
Decision makers are often faced with several conflicting alternatives. How do they evaluate trade-offs when there are more than three criteria? To help people make optimal decisions, scholars in the discipline of multiple criteria decision making (MCDM) continue to develop new methods for structuring preferences and determining the correct relative weights for criteria. A compilation of modern decision-making techniques, Multiple Attribute Decision Making: Methods and Applications focuses on the fuzzy set approach to multiple attribute decision making (MADM). Drawing on their experience, the authors bring together current methods and real-life applications of MADM techniques for decision analysis. They also propose a novel hybrid MADM model that combines DEMATEL and analytic network process (ANP) with VIKOR procedures. The first part of the book focuses on the theory of each method and includes examples that can be calculated without a computer, providing a complete understanding of the procedures. Methods include the analytic hierarchy process (AHP), ANP, simple additive weighting method, ELECTRE, PROMETHEE, the gray relational model, fuzzy integral technique, rough sets, and the structural model. Integrating theory and practice, the second part of the book illustrates how methods can be used to solve real-world MADM problems. Applications covered in the book include: AHP to select planning and design services for a construction project TOPSIS and VIKOR to evaluate the best alternative-fuel vehicles for urban areas ELECTRE to solve network design problems in urban transportation planning PROMETEE to set priorities for the development of new energy systems, from solar thermal to hydrogen energy Fuzzy integrals to evaluate enterprise intranet web sites Rough sets to make decisions in insurance marketing Helping readers understand how to apply MADM techniques to their decision making, this book is suitable for undergraduate and graduate students as well as practitioners.
Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES • Exploring R, RStudio, and R packages • Using R for math: variable types, vectors, calling functions, and more • Exploiting data structures, including data.frames, matrices, and lists • Creating attractive, intuitive statistical graphics • Writing user-defined functions • Controlling program flow with if, ifelse, and complex checks • Improving program efficiency with group manipulations • Combining and reshaping multiple datasets • Manipulating strings using R’s facilities and regular expressions • Creating normal, binomial, and Poisson probability distributions • Programming basic statistics: mean, standard deviation, and t-tests • Building linear, generalized linear, and nonlinear models • Assessing the quality of models and variable selection • Preventing overfitting, using the Elastic Net and Bayesian methods • Analyzing univariate and multivariate time series data • Grouping data via K-means and hierarchical clustering • Preparing reports, slideshows, and web pages with knitr • Building reusable R packages with devtools and Rcpp • Getting involved with the R global community
This text presents the basic concepts and procedures for the design and optimization of thermal systems. Through a variety of open-ended problems and examples, it discusses conceptual design, formulation, modelling, simulation, synthesis and optimization. Computational systems are presented as an important part of the design process, and computer programs which aid the numerical modelling and simulation process are included. The examples progress from simple systems to full-scale practical systems, and are taken from a variety of areas including materials processing, electronic equipment, energy conversion, environmental problems, engines and cooling systems.

Best Books