Download Free Geothermal Reservoir Engineering Book in PDF and EPUB Free Download. You can read online Geothermal Reservoir Engineering and write the review.

Geothermal Reservoir Engineering offers a comprehensive account of geothermal reservoir engineering and a guide to the state-of-the-art technology, with emphasis on practicality. Topics covered include well completion and warm-up, flow testing, and field monitoring and management. A case study of a geothermal well in New Zealand is also presented. Comprised of 10 chapters, this book opens with an overview of geothermal reservoirs and the development of geothermal reservoir engineering as a discipline. The following chapters focus on conceptual models of geothermal fields; simple models that illustrate some of the processes taking place in geothermal reservoirs under exploitation; measurements in a well from spudding-in up to first discharge; and flow measurement. The next chapter provides a case history of one well in the Broadlands Geothermal Field in New Zealand, with particular reference to its drilling, measurement, discharge, and data analysis/interpretation. The changes that have occurred in exploited geothermal fields are also reviewed. The final chapter considers three major problems of geothermal reservoir engineering: rapid entry of external cooler water, or return of reinjected water, in fractured reservoirs; the effects of exploitation on natural discharges; and subsidence. This monograph serves as both a text for students and a manual for working professionals in the field of geothermal reservoir engineering. It will also be of interest to engineers and scientists of other disciplines.
During the oil crisis of 1973, we suddenly became aware that fossil fuel resources are limited and will be exhausted soon if new alternatives are not put into use immediately. Conservation measures and extensive research on new sources of energy has eased the demand on fossil fuels, especially crude oil. Geothermal energy as an alternative; source had its share in this devel opment and electricity producing capacity increased from 700 to 4700 MWe during 1970 to 1985. Geothermal reservoir engineering emerged as an impor tant field in the assessment of geothermal sources. During the 25 years of its development, several areas were identified that needed further at tention for the correct description and interpretation of reservoir be havior. This fact as accepted by all operators is vital for the steady and continuous operation of power plants. During this NATO ASI, a detailed review of theory and field case his tories on geothermal reservoir engineering was presented. In understanding .the reservoir, conceptual models, natural state models, well bore measure ments, transient and tracer testing provide data which are indispensable. They are powerful tools in understanding reservoir behavior provided we know how to interpret them. During lectures the theory and practical applications of these interpretive methods were discussed.
This report first describes reservoir engineering within the broad field of petroleum engineering. The report next describes the general pattern of reservoir engineering in terms of performance observations, hypothesis construction and testing, and reservoir development planning, and emphasizes the importance of searching for the hypothesis about the nature of the reservoir system derived from all known facts instead of a model that includes only selected fact. The history since 1900 of gas, oil, and geothermal reservoir engineering research is briefly described.
As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate. For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference. This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The book focuses particularly on the evaluation of potential sites and provides detailed guidance on the field management of the power plants built on them. With over 100 pages of new material informed by the breakthroughs of the last 25 years, Geothermal Reservoir Engineering remains the only training tool and professional reference dedicated to advising both new and experienced geothermal reservoir engineers. The only resource available to help geothermal professionals make smart choices in field site selection and reservoir management Practical focus eschews theory and basics- getting right to the heart of the important issues encountered in the field Updates include coverage of advances in EGS (enhanced geothermal systems), well stimulation, well modeling, extensive field histories and preparing data for reservoir simulation Case studies provide cautionary tales and best practices that can only be imparted by a seasoned expert
The essential features of the reservoir codes CHARGR and MUSHRM are described. Solutions obtained for the problem set posed by DOE are presented. CHARGR was used for all six problems; MUSHRM was used for one. These problems are: the 1-D Avdonin solution, the 1-D well test analysis, 2-D flow to a well in fracture/block media, expanding two-phase system with drainage, flow in a 2-D areal reservoir, and flow in a 3-D reservoir. Results for the last problem using both codes are compared. (MHR).
PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.
The history of geothermal well drilling in Hawaii is reviewed briefly. The following are discussed: the geophysical program, pre-drilling speculative models, geothermal reservoir engineering, the drilling program, the measurement activities, a preliminary reservoir analysis of HGP-A well, and future activities. (MHR).

Best Books