Download Free Geothermal Reservoir Engineering Book in PDF and EPUB Free Download. You can read online Geothermal Reservoir Engineering and write the review.

Geothermal Reservoir Engineering offers a comprehensive account of geothermal reservoir engineering and a guide to the state-of-the-art technology, with emphasis on practicality. Topics covered include well completion and warm-up, flow testing, and field monitoring and management. A case study of a geothermal well in New Zealand is also presented. Comprised of 10 chapters, this book opens with an overview of geothermal reservoirs and the development of geothermal reservoir engineering as a discipline. The following chapters focus on conceptual models of geothermal fields; simple models that illustrate some of the processes taking place in geothermal reservoirs under exploitation; measurements in a well from spudding-in up to first discharge; and flow measurement. The next chapter provides a case history of one well in the Broadlands Geothermal Field in New Zealand, with particular reference to its drilling, measurement, discharge, and data analysis/interpretation. The changes that have occurred in exploited geothermal fields are also reviewed. The final chapter considers three major problems of geothermal reservoir engineering: rapid entry of external cooler water, or return of reinjected water, in fractured reservoirs; the effects of exploitation on natural discharges; and subsidence. This monograph serves as both a text for students and a manual for working professionals in the field of geothermal reservoir engineering. It will also be of interest to engineers and scientists of other disciplines.
During the oil crisis of 1973, we suddenly became aware that fossil fuel resources are limited and will be exhausted soon if new alternatives are not put into use immediately. Conservation measures and extensive research on new sources of energy has eased the demand on fossil fuels, especially crude oil. Geothermal energy as an alternative; source had its share in this devel opment and electricity producing capacity increased from 700 to 4700 MWe during 1970 to 1985. Geothermal reservoir engineering emerged as an impor tant field in the assessment of geothermal sources. During the 25 years of its development, several areas were identified that needed further at tention for the correct description and interpretation of reservoir be havior. This fact as accepted by all operators is vital for the steady and continuous operation of power plants. During this NATO ASI, a detailed review of theory and field case his tories on geothermal reservoir engineering was presented. In understanding .the reservoir, conceptual models, natural state models, well bore measure ments, transient and tracer testing provide data which are indispensable. They are powerful tools in understanding reservoir behavior provided we know how to interpret them. During lectures the theory and practical applications of these interpretive methods were discussed.
For reservoir engineers in private industry, a geothermal project begins when a potential geothermal prospect is being evaluated for leasing. The reservoir engineer must be involved with the exploitation and land acquisition groups, and with the exploration and initial drilling program. The reservoir engineer must contribute information to the environmental impact analysis, and is challenged to determine how large his reserves are within the shortest possible time and with the minimum amount of wells and testing. Needs are described for temperature tools as sensitive as those for bottomhole pressure measurement, for analysis of chemical data for its implications about reservoir performance, for more complete understanding of the effects of water injection into reservoirs, and for techniques that minimize water injection's detrimental effects. The engineering going on in the field is highly complementary to the current research activity.
This report first describes reservoir engineering within the broad field of petroleum engineering. The report next describes the general pattern of reservoir engineering in terms of performance observations, hypothesis construction and testing, and reservoir development planning, and emphasizes the importance of searching for the hypothesis about the nature of the reservoir system derived from all known facts instead of a model that includes only selected fact. The history since 1900 of gas, oil, and geothermal reservoir engineering research is briefly described.
PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

Best Books