Download Free Geologic Fundamentals Of Geothermal Energy Book in PDF and EPUB Free Download. You can read online Geologic Fundamentals Of Geothermal Energy and write the review.

Geothermal energy stands out because it can be used as a baseload resource. This book, unlike others, examines the geology related to geothermal applications. Geology dictates (a) how geothermal resources can be found, (b) the nature of the geothermal resource (such as liquid- or vapor-dominated) and (c) how the resource might be developed ultimately (such as flash or binary geothermal plants). The compilation and distillation of geological elements of geothermal systems into a single reference fills a notable gap.
Now in its 4th edition, this single resource covers all aspects of the utilization of geothermal energy for power generation using fundamental scientific and engineering principles. Its practical emphasis is enhanced by the use of global case studies from real plants and applications from around the world that increase your understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. Technical, economic and business aspects presented in case studies provide current and up-and-coming geothermal developers and entrepreneurs with a solid understanding of opportunities and pitfalls. Geothermal Power Plants, 4th Edition, presents state-of-the-art geothermal developments and experience of real applications for professionals, and a comprehensive reference for theory and practice. Important new and revised content on double- and triple-flash steam power plants, plant and well pumps, and biomass-geothermal and solar-geothermal hybrid systems New chapters on global case studies with comprehensive and up-to-date statistics, including New Zealand, Indonesia, Central America and the Caribbean, and the state of Nevada, USA, plus updated chapters on Larderello (Italy), The Geysers (USA), Turkey and Enhanced Geothermal Systems (EGS) make this useable and relevant for a global audience Revised and additional practice problems with emphasis on system simulation using electronic equations of state for working fluid properties. SI units are now used exclusively
In the region comprising Turkey and Greece, people have been using water from geothermal sources for bathing and washing of clothes since ancient times. This region falls within the Alpine-Himalayan orogenic belt and hence is a locus of active volcanism and tectonism and experiences frequent seismic events. This volcanic and tectonic activity has given rise to over 1500 geothermal springs. Its importance was recognized decades ago and the geothermal water is now being utilized for district heating, industrial processing, domestic water supply, balneology and electric power generation. The geothermal potential in this region is large. In Turkey alone it is estimated to be more than 31500 MWt while the proven potential is 4078 MWt. At present 2084 MWt is being utilized for direct applications in Turkey and 135 MWt in Greece. In Turkey electricity is produced for 166 MW installed capacity, whereas in Greece geothermal energy is presently not used for electricity production despite its potential. This book discusses the geochemical evolution of the thermal waters and thermal gases in terms of the current volcano-tectonic setting and associated geological framework that makes the region very important to the geothermal scientific community. The book explains, in a didactic way, the possible applications, depending on local conditions and scales, and it presents new and stimulating ideas for future developments of this renewable energy source. Additionally, the book discusses the role(s) of possible physicochemical processes in deep hydrothermal systems, the volatile provenance and relative contributions of mantle and crustal components to total volatile inventories. It provides the reader with a thorough understanding of the geothermal systems of this region and identifi es the most suitable solutions for specifi c tasks and needs elsewhere in the world. It is the fi rst time that abundant information and data from this region, obtained from intensive research during the last few decades, is unveiled to the international geothermal community. Thus, an international readership, in the professional and academic sectors, as well as in key institutions that deal with geothermal energy, will benefit from the knowledge from geothermal research and experiences obtained from the Aegean Region.
The internal heat of the planet Earth represents an inexhaustible reservoir of thermal energy. This form of energy, known as geothermal energy has been utilized throughout human history in the form of hot water from hot springs. Modern utilization of geothermal energy includes direct use of the heat and its conversion to other forms of energy, mainly electricity. Geothermal energy is a form of renewable energy and its use is associated with very little or no CO2-emissions and its importance as an energy source has greatly increased as the effects of climate change become more prominent. Because of its inexhaustibility it is obvious that utilization of geothermal energy will become a cornerstone of future energy supplies. The exploration of geothermal resources has become an important topic of study as geology and earth science students prepare to meet the demands of a rapidly growing industry, which involves an increasing number professionals and public institutions participating in geothermal energy related projects. This book meets the demands of both groups of readers, students and professionals. Geothermal Energy and its utilization is systematically presented and contains the necessary technical information needed for developing and understanding geothermal energy projects. It presents basic knowledge on the Earth’s thermal regime and its geothermal energy resources, the types of geothermal energy used as well as its future potential and the perspectives of the industry. Specific chapters of the book deal with borehole heat exchangers and with the direct use of groundwater and thermal water in hydrogeothermal systems. A central topic are Enhanced Geothermal Systems (hot-dry-rock systems), a key technology for energy supply in the near future. Pre-drilling site investigations, drilling technology, well logging and hydraulic test programs are important subjects related to the exploration phase of developing Geothermal Energy sites. The chemical composition of the natural waters used as a heat transport medium in geothermal systems can be used as an exploration tool, but chemistry is also important during operation of a geothermal power plant because of potential scale formation and corrosion of pipes and installations, which needs to be prevented. Graduate students and professionals will find in depth information on Geothermal Energy, its exploration and utilization.
This book introduces aqueous geochemistry applied to geothermal systems. It is specifically designed for readers first entering into the world of geothermal energy from a variety of scientific and engineering backgrounds, and consequently is not intended to be the last word on geothermal chemistry. Instead it is intended to provide readers with sufficient background knowledge to permit them to subsequently understand more complex texts and scientific papers on geothermal energy. The book is structured into two parts. The first explains how geothermal fluids and their associated chemistry evolve, and shows how the chemistry of these fluids can be used to, deduce information about the resource. The second part concentrates on survey techniques explaining how these should be performed and the procedures which need to be adopted to ensure reliable sampling and analytical data are obtained. A geothermal system requires a heat source and a fluid which transfers the heat towards the surface. The fluid could be molten rock (magma) or water. This book concentrates on the chemistry of the water, or hydrothermal, systems. Consequently, magma-energy systems are not considered. Hot-dry rock (HDR) systems are similarly outside the scope of this text, principally because they contain no indigenous fluid for study. Both magma-energy and HDR systems have potential as energy sources but await technological developments before they can be exploited commercially. Geothermal systems based on water, however, are proven energy resources which have been successfully developed throughout the world.
More than 20 countries generate electricity from geothermal resources and about 60 countries make direct use of geothermal energy. A ten-fold increase in geothermal energy use is foreseeable at the current technology level. Geothermal Energy: An Alternative Resource for the 21st Century provides a readable and coherent account of all facets of geothermal energy development and summarizes the present day knowledge on geothermal resources, their exploration and exploitation. Accounts of geothermal resource models, various exploration techniques, drilling and production technology are discussed within 9 chapters, as well as important concepts and current technological developments. Interdisciplinary approach, combining traditional disciplines such as geology, geophysics, and engineering Provides a readable and coherent account of all facets of geothermal energy development Describes the importance of bringing potable water to high-demand areas such as the tropical regions

Best Books