Download Free Exploring Monte Carlo Methods Book in PDF and EPUB Free Download. You can read online Exploring Monte Carlo Methods and write the review.

Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon’s needle problem" provides a unifying theme as it is repeatedly used to illustrate many features of Monte Carlo methods. This book provides the basic detail necessary to learn how to apply Monte Carlo methods and thus should be useful as a text book for undergraduate or graduate courses in numerical methods. It is written so that interested readers with only an understanding of calculus and differential equations can learn Monte Carlo on their own. Coverage of topics such as variance reduction, pseudo-random number generation, Markov chain Monte Carlo, inverse Monte Carlo, and linear operator equations will make the book useful even to experienced Monte Carlo practitioners. Provides a concise treatment of generic Monte Carlo methods Proofs for each chapter Appendixes include Certain mathematical functions; Bose Einstein functions, Fermi Dirac functions, Watson functions
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.
This text introduces upper division undergraduate/beginning graduate students in mathematics, finance, or economics, to the core topics of a beginning course in finance/financial engineering. Particular emphasis is placed on exploiting the power of the Monte Carlo method to illustrate and explore financial principles. Monte Carlo is the uniquely appropriate tool for modeling the random factors that drive financial markets and simulating their implications. The Monte Carlo method is introduced early and it is used in conjunction with the geometric Brownian motion model (GBM) to illustrate and analyze the topics covered in the remainder of the text. Placing focus on Monte Carlo methods allows for students to travel a short road from theory to practical applications. Coverage includes investment science, mean-variance portfolio theory, option pricing principles, exotic options, option trading strategies, jump diffusion and exponential Lévy alternative models, and the Kelly criterion for maximizing investment growth. Novel features: inclusion of both portfolio theory and contingent claim analysis in a single text pricing methodology for exotic options expectation analysis of option trading strategies pricing models that transcend the Black–Scholes framework optimizing investment allocations concepts thoroughly explored through numerous simulation exercises numerous worked examples and illustrations The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. The mathematical background required is a year and one-half course in calculus, matrix algebra covering solutions of linear systems, and a knowledge of probability including expectation, densities and the normal distribution. A refresher for these topics is presented in the Appendices. The programming background needed is how to code branching, loops and subroutines in some mathematical or general purpose language. Also by the author: (with F. Mendivil) Explorations in Monte Carlo, ©2009, ISBN: 978-0-387-87836-2; (with J. Herod) Mathematical Biology: An Introduction with Maple and Matlab, Second edition, ©2009, ISBN: 978-0-387-70983-3.
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book—the first of its kind—addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific to electron, photon, and proton ion beams and brachytherapy; and the optimization of treatment planning, radiation dosimetry, and quality assurance. Useful to clinical physicists, graduate students, and researchers, this book provides a detailed, state-of-the-art guide to the fundamentals, application, and customization of Monte Carlo techniques in radiotherapy. Through real-world examples, it illustrates the use of Monte Carlo modeling and simulations in dose calculation, beam delivery, kilovoltage and megavoltage imaging, proton radiography, device design, and much more.
The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method’s fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: Introduces the particle importance equation and its use for variance reduction Describes general and particle-transport-specific variance reduction techniques Presents particle transport eigenvalue issues and methodologies to address these issues Explores advanced formulations based on the author’s research activities Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide to the application of the Monte Carlo method.
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Best Books