Download Free Compliant Mechanisms Book in PDF and EPUB Free Download. You can read online Compliant Mechanisms and write the review.

A concise survey of compliant mechanisms-from fundamentals to state-of-the-art applications This volume presents the newest and most effective methods for the analysis and design of compliant mechanisms. It provides a detailed review of compliant mechanisms and includes a wealth of useful design examples for engineers, students, and researchers. Concise chapters guide the reader from simple to more challenging concepts-using examples of increasing complexity-eventually leading to real-world applications for specific types of devices. The author focuses on compliant mechanisms that can be designed using both standard linear beam equations and more advanced pseudo-rigid-body models. He describes a number of special-purpose compliant mechanisms that have use across a wide range of applications and discusses compliant mechanisms in microelectromechanical systems (MEMS) with several accompanying MEMS examples. Coverage of essential topics in strength of materials, machine design, and kinematics is provided to allow for a self-contained book that requires little additional reference to solve compliant mechanism problems. This information can be used as a refresher on the basics or as resource material for readers from other disciplines currently working in MEMS. Compliant Mechanisms serves as both an introductory text for students and an up-to-date resource for practitioners and researchers. It provides comprehensive, expert coverage of this growing field.
A fully illustrated reference book giving an easy-to-understand introduction to compliant mechanisms A broad compilation of compliant mechanisms to give inspiration and guidance to those interested in using compliant mechanisms in their designs, the Handbook of Compliant Mechanisms includes graphics and descriptions of many compliant mechanisms. It comprises an extensive categorization of devices that can be used to help readers identify compliant mechanisms related to their application. It also provides chapters on the basic background in compliant mechanisms, the categories of compliant mechanisms, and an example of how the Compendium can be used to facilitate compliant mechanism design. Fully illustrated throughout to be easily understood and accessible at introductory levels Covers all aspects pertaining to classification, elements, mechanisms and applications of compliant mechanisms Summarizes a vast body of knowledge in easily understood diagrams and explanations Helps readers appreciate the advantages that compliant mechanisms have to offer Practical approach is ideal for potential practitioners who would like to realize designs with compliant mechanisms, members and elements Breadth of topics covered also makes the book a useful reference for more advanced readers Intended as an introduction to the area, the Handbook avoids technical jargon to assist non engineers involved in product design, inventors and engineers in finding clever solutions to problems of design and function.
Flexure hinges hold several advantages over classical rotation joints, including no friction losses, no need for lubrication, no hysteresis, compactness, capacity to be utilized in small-scale applications, ease of fabrication, virtually no assembly, and no required maintenance. Compliant Mechanisms: Design of Flexure Hinges provides practical answers to the present and future needs of efficient design, analysis, and optimization of devices that incorporate flexure hinges. With a highly original approach the text: Discusses new and classical types of flexure hinges (single-, two- and multiple-axis) for two- and three-dimensional applications Addresses a wide range of industrial applications, including micro- and nano-scale mechanisms Quantifies flexibility, precision of rotation, sensitivity to parasitic loading, energy consumption, and stress limitations through closed-form compliance equations Offers a unitary presentation of individual flexure hinges as fully-compliant members by means of closed-form compliance (spring rates) equations Fully defines the lumped-parameter compliance, inertia and damping properties of flexure hinges Develops a finite element approach to compliant mechanisms by giving the elemental formulation of new flexure hinge line elements Incorporates more advanced topics dedicated to flexure hinges including large deformations, buckling, torsion, composite flexures, shape optimization and thermal effects Compliant Mechanisms: Design of Flexure Hinges provides practical answers and directions to the needs of efficiently designing, analyzing, and optimizing devices that include flexure hinges. It contains ready-to-use plots and simple equations describing several flexure types for the professional that needs quick solutions to current applications. The book also provides self-contained, easy-to-apply mathematical tools that provide sufficient guidance for real-time problem solving of further applications.
A concise survey of compliant mechanisms-from fundamentals to state-of-the-art applications This volume presents the newest and most effective methods for the analysis and design of compliant mechanisms. It provides a detailed review of compliant mechanisms and includes a wealth of useful design examples for engineers, students, and researchers. Concise chapters guide the reader from simple to more challenging concepts-using examples of increasing complexity-eventually leading to real-world applications for specific types of devices. The author focuses on compliant mechanisms that can be designed using both standard linear beam equations and more advanced pseudo-rigid-body models. He describes a number of special-purpose compliant mechanisms that have use across a wide range of applications and discusses compliant mechanisms in microelectromechanical systems (MEMS) with several accompanying MEMS examples. Coverage of essential topics in strength of materials, machine design, and kinematics is provided to allow for a self-contained book that requires little additional reference to solve compliant mechanism problems. This information can be used as a refresher on the basics or as resource material for readers from other disciplines currently working in MEMS. Compliant Mechanisms serves as both an introductory text for students and an up-to-date resource for practitioners and researchers. It provides comprehensive, expert coverage of this growing field.

Best Books