Download Free Cognitive Electrophysiology Of Attention Signals Of The Mind Book in PDF and EPUB Free Download. You can read online Cognitive Electrophysiology Of Attention Signals Of The Mind and write the review.

Cognitive Electrophysiology of Attention explores the fundamental mechanisms of attention and related cognitive functions from cognitive neuroscience perspectives. Attention is an essential cognitive ability that enables humans to process and act upon relevant information while ignoring distracting information, and the capacity to focus attention is at the core of mental functioning. Understanding the neural bases of human attention remains a key challenge for neuroscientists and psychologists, and is essential for translational efforts to treat attentional deficits in a variety of neurological and psychiatric disorders. Cognitive electrophysiology is at the center of a multidisciplinary approach that involves the efforts of psychologists, neuroscientists, neuropsychologists, psychiatrists, and neurologists to identify basic brain mechanisms and develop translational approaches to improve mental health. This edited volume is authored by leading investigators in the field and discusses methods focused on electrophysiological recordings in humans, including electroencephalography (EEG) and event-related potential (ERP) methods, and also incorporates evidence from functional magnetic resonance imaging (fMRI). Cognitive Electrophysiology of Attention illuminates specific models about attentional mechanisms in vision, audition, multisensory integration, memory, and semantic processing in humans. Provides an exhaustive overview of attention processes, going from normal functioning to the pathological, and using a combination of methodological tools An important reference for electrophysiology researchers looking at underlying attention processes rather than the methods themselves Enables researchers across a broad range of cognitive-process and methodological specialties to stay current on particular hypotheses, findings, and methods Edited and authored by the worldwide leaders in the field, affording the broadest, most expert coverage available
Contrasting conditions with and without conscious experience has served consciousness research well. However, research based on this simple contrast has led to controversies about the neural basis of conscious experience. One key reason for these ongoing debates seems to be that the simple contrast between conditions with and without consciousness is not specific for unraveling the neural basis of conscious experience, but rather also leads to other processes that precede or follow it. Acknowledging this methodological problem implies that some of the previous research findings about the neural underpinnings of conscious experience are actually reflecting the prerequisites and consequences rather than the direct correlates of conscious perception. Thus, it is required to re-evaluate the previous results to find out which of them are telling us anything about the neural basis of consciousness. But first and foremost, to overcome this methodological problem we need new experimental paradigms that go beyond the simple contrastive analysis or find the ways how some older but well forgotten paradigms may foster a new look at this emerging problem. Accordingly, this research topic is looking for empirical and theoretical contributions that: 1) envision new and suitable experimental approaches to study consciousness that are free from the limitations of the simple contrastive analysis; 2) provide empirical data that help to separate the neural correlates of conscious experience from the prerequisites and consequences of it; 3) help to re-assess previous research findings about the neural correlates of conscious perception in the light of the methodological problems with the traditional contrastive analysis. We hope that the theoretical insights and experimental approaches collected within this Research Topic help us to gain a more refined understanding of the neural basis of conscious experience.
MICHAEL S. GAZZANIGA The investigation of the human brain and mind involves a myriad of ap proaches. Cognitive neuroscience has grown out of the appreciation that these approaches have common goals that are separate from other goals in the neural sciences. By identifying cognition as the construct of interest, cognitive neuro science limits the scope of investigation to higher mental functions, while simultaneously tackling the greatest complexity of creation, the human mind. The chapters of this collection have their common thread in cognitive neuroscience. They attack the major cognitive processes using functional stud ies in humans. Indeed, functional measures of human sensation, perception, and cognition are the keystone of much of the neuroscience of cognitive sci ence, and event-related potentials (ERPs) represent a methodological "coming of age" in the study of the intricate temporal characteristics of cognition. Moreover, as the field of cognitive ERPs has matured, the very nature of physiology has undergone a significant revolution. It is no longer sufficient to describe the physiology of non-human primates; one must consider also the detailed knowledge of human brain function and cognition that is now available from functional studies in humans-including the electrophysiological studies in humans described here. Together with functional imaging of the human brain via positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), ERPs fill our quiver with the arrows required to pierce more than the single neuron, but the networks of cognition.
Cognitive electrophysiology is a very well established field utilizing new technologies such as bioelectric events-related potentials (ERP) and magnetic (ERF) recordings to pursue the investigation of mind and brain. Current research focuses on reviewing ERP/ERF findings in the areas of attention, language, memory, visual and auditory perceptual processing, emotions, development, and neuropsychological clinical damages. The goal of such research is basically to provide correlations between the structures of the brain and their complex cognitive functions. This book reviews the latest findings in the areas of attention, language, memory, visual and auditory perception, and brain damage research based primarily on research conducted using ERP recordings. Beyond just compiling the knowledge gained from ongoing research, the authors also identify outstanding problems in the field and predict future developments. Key Features * Provides an original post-cognitive theoretical approach to the investigation of the human mind and brain * Presents integrated view of the emotional and cognitive features as well as of developmental features of neurocognitive systems * Well-illustrated with elegant and original artwork that clarifies complex theoretical and methodological points throughout the text
Cognitive electrophysiology is a very well established field utilizing new technologies such as bioelectric events-related potentials (ERP) and magnetic (ERF) recordings to pursue the investigation of mind and brain. Current research focuses on reviewing ERP/ERF findings in the areas of attention, language, memory, visual and auditory perceptual processing, emotions, development, and neuropsychological clinical damages. The goal of such research is basically to provide correlations between the structures of the brain and their complex cognitive functions. This book reviews the latest findings in the areas of attention, language, memory, visual and auditory perception, and brain damage research based primarily on research conducted using ERP recordings. Beyond just compiling the knowledge gained from ongoing research, the authors also identify outstanding problems in the field and predict future developments. Key Features * Provides an original post-cognitive theoretical approach to the investigation of the human mind and brain * Presents integrated view of the emotional and cognitive features as well as of developmental features of neurocognitive systems * Well-illustrated with elegant and original artwork that clarifies complex theoretical and methodological points throughout the text
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over thepast several years, provides an in-depth introduction to the main ideas in the computationalcognitive neuroscience.
During the last three decades, there have been enormous advances in our understanding of the neural mechanisms of selective attention at the network as well as the cellular level. The Oxford Handbook of Attention brings together the different research areas that constitute contemporary attention research into one comprehensive and authoritative volume. In 40 chapters, it covers the most important aspects of attention research from the areas of cognitive psychology, neuropsychology, human and animal neuroscience, computational modelling, and philosophy. The book is divided into 4 main sections. Following an introduction from Michael Posner, the books starts by looking at theoretical models of attention. The next two sections are dedicated to spatial attention and non-spatial attention respectively. Within section 4, the authors consider the interactions between attention and other psychological domains. The last two sections focus on attention-related disorders, and finally, on computational models of attention. Aimed at both scholars and students, the Oxford Handbook of Attention provides a concise and state-of-the-art review of the current literature in this field.

Best Books