Download Free Algorithm Design Book in PDF and EPUB Free Download. You can read online Algorithm Design and write the review.

Most professional programmers that I’ve encountered are not well prepared to tackle algorithm design problems. This is a pity, because the techniques of algorithm design form one of the core practical technologies of computer science. Designing correct, efficient, and implementable algorithms for real-world problems requires access to two distinct bodies of knowledge: • Techniques – Good algorithm designers understand several fundamental algorithm design techniques, including data structures, dynamic programming, depth first search, backtracking, and heuristics. Perhaps the single most important design technique is modeling, the art of abstracting a messy real-world application into a clean problem suitable for algorithmic attack. • Resources – Good algorithm designers stand on the shoulders of giants. Rather than laboring from scratch to produce a new algorithm for every task, they can figure out what is known about a particular problem. Rather than re-implementing popular algorithms from scratch, they seek existing implementations to serve as a starting point. They are familiar with many classic algorithmic problems, which provide sufficient source material to model most any application. This book is intended as a manual on algorithm design, providing access to combinatorial algorithm technology for both students and computer professionals.
August 6, 2009 Author, Jon Kleinberg, was recently cited in the New York Times for his statistical analysis research in the Internet age. Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.
This volume helps take some of the "mystery" out of identifying and dealing with key algorithms. Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide.THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains:* a complete hypertext version of the full printed book.* the source code and URLs for all cited implementations.* over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.
Richard Bird takes a radical approach to algorithm design, namely, design by calculation. These 30 short chapters each deal with a particular programming problem drawn from sources as diverse as games and puzzles, intriguing combinatorial tasks, and more familiar areas such as data compression and string matching. Each pearl starts with the statement of the problem expressed using the functional programming language Haskell, a powerful yet succinct language for capturing algorithmic ideas clearly and simply. The novel aspect of the book is that each solution is calculated from an initial formulation of the problem in Haskell by appealing to the laws of functional programming. Pearls of Functional Algorithm Design will appeal to the aspiring functional programmer, students and teachers interested in the principles of algorithm design, and anyone seeking to master the techniques of reasoning about programs in an equational style.
August 6, 2009 Author, Jon Kleinberg, was recently cited in the New York Times for his statistical analysis research in the Internet age. Algorithm Design introduces algorithms by looking at the real-world problems that motivate them. The book teaches students a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.
Provides an integrated picture of the latest developments in algorithmic techniques, with numerous worked examples, algorithm visualisations and exercises.
Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.

Best Books